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Correlation-induced steady states and limit cycles in driven dissipative quantum systems
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We study a driven-dissipative model of spins one-half (qubits) on a lattice with nearest-neighbor interactions.
Focusing on the role of spatially extended spin-spin correlations in determining the phases of the system, we
characterize the spatial structure of the correlations in the steady state, as well as their temporal dynamics. In
dimension one we use essentially exact matrix-product-operator simulations on large systems, and pushing these
calculations to dimension two, we obtain accurate results on small cylinders. We also employ an approximation
scheme based on solving the dynamics of the mean field dressed by the feedback of quantum fluctuations at
leading order. This approach allows us to study the effect of correlations in large lattices with over one hundred
thousand spins, as the spatial dimension is increased up to five. In dimension two and higher we find two new
states that are stabilized by quantum correlations and do not exist in the mean-field limit of the model. One
of these is a steady state with mean magnetization values that lie between the two bistable mean-field values
and whose correlation functions have properties reminiscent of both. The correlation length of the new phase
diverges at a critical point, beyond which we find emerging a new limit cycle state with the magnetization and
correlators oscillating periodically in time.
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I. INTRODUCTION

Atomic, optical, and solid-state systems are often oper-
ated in many-body nonequilibrium regimes characterized by
a competition between interactions, nonlinearity, coherent
external driving, and dissipative dynamics. These include
arrays of coupled circuit quantum electrodynamic (QED)
units [1], spin ensembles embedded into large optical or
microwave cavities [2–4], mesoscopic quantum circuits of
increasing complexity interfaced with microwave resonators
[5,6], trapped ions [7], and cold atoms [8,9]. A rich pat-
tern of behaviors at the interface between quantum optics
and condensed matter physics is observed with systems of
strong light-matter interactions [10–20]. Dissipative phase
transitions and critical phenomena in open systems attract
increasing attention and research activity [20–37]. Driving
and dissipation can be utilized in the generation of topological
quantum states by coupling to a specially tailored bath [38]
or time-periodic (Floquet) driving [39]. Proposals to realize
artificial gauge fields with circuit-QED photonic lattices [40],
chiral edge modes [41,42], and quantum Hall fluids of light
[43–45] follow the paradigm of engineering topological states
in fully neutral quantum systems [46].
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An open quantum system coupled to a Markovian bath
obeys a Lindblad master equation for the time evolution of
the density matrix ρ,

∂tρ = −i[H, ρ] + D[ρ], h̄ = 1. (1)

Here the first term on the right-hand side describes the coher-
ent evolution due to interactions and possibly coherent driving
terms (with the Hamiltonian H in the rotating frame), while
the dissipator D[ρ] accounts for dephasing and relaxation
processes due to the environment, described by a set of
jump operators. The simplest approach for obtaining solu-
tions of such systems, applied to various driven-dissipative
systems (mostly of coupled spins or oscillators) [20,47–
56], is the mean-field (MF) decoupling limit, in which ρ is
approximated by a product of single-site density matrices.
The MF phase diagrams obtained this way manifest both
translationally-invariant steady states and antiferromagnetic
(AF) or staggered phases of a spontaneously broken sym-
metry, where neighboring sites have different mean magne-
tization or density. Oscillatory limit cycle (LC) phases that
break time-translation invariance [57] have also been found,
and in addition, there are bistable or multistable parameter
regions where two or more different states coexist.

A highly debated question in the literature is whether
the AF, LC, and multistable phases found in MF are gen-
uine features of the quantum system. A large number of
studies concern one-dimensional (1D) lattices (mostly with
nearest-neighbor interactions), finding that the MF AF phase
is replaced by a uniform phase stabilized by AF correla-
tions [47,55,58,59], and bistability is replaced by a smooth
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crossover accompanied by large quantum fluctuations [52,60–
63]. These conclusions rely on accurate numerical methods
that can be applied to large 1D systems, such as matrix
product operator (MPO) simulations, but an experimental
investigation is still lacking. In two-dimensional (2D) lat-
tices, numerical methods are much more limited. MF bista-
bility has been found by some approximate methods to be
replaced by a sharp first order jump between two phases
[52,60,62,64,65]. A dynamical timescale diverging at the
jump has been found [60,62,63], which is attributed to a
vanishing Liouvillian gap—the smallest magnitude of the real
part of the nonzero eigenvalues [66]. Limit cycles in the
driven-dissipative Heisenberg lattice which are predicted in
MF, were found to disappear due to short-range correlations
in finite dimensions [67].

In Ref. [63] we have presented a theoretical scenario for
quantum bistability in driven dissipative lattice systems of
spatial dimension two and higher. We have provided numer-
ical evidence in its support using a self-consistent theory of
quantum fluctuations beyond mean field, dubbed MF with
quantum fluctuations (MFQF) and MPO simulations, applied
to spins one-half. Within this scenario the MF bistability is
not washed away by quantum correlations, provided the ther-
modynamic limit of infinite large system size is taken before
the long-time limit, i.e., provided the system is studied on
time scales which are smaller than exponential in system size.
We also discussed what this scenario implies concerning the
slowly-relaxing eigenstates of the Liouvillian super operator.

The questions we address in this work are: (i) How the
patterns of stationary states and fixed point of the dissipative
dynamics change with increasing interactions in the system
and in particular how they deviate from the MF solutions,
(ii) whether phases not accessible in MF can be induced and
stabilized in the system by the quantum correlations, and (iii)
whether long-range (spatial and temporal) order induced by
a competition between driving and dissipation can be stabi-
lized by quantum fluctuations beyond MF. Specifically, we
consider a driven-dissipative quantum spin model, discussed
in Ref. [63]. We study its steady state and dynamical proper-
ties for larger values of the nearest-neighbor interactions (as
compared to the regime studied in Ref. [63]), presenting for
completeness and as a reference point, a detailed study of the
MF limit. In dimension two and higher we find two new states
that are stabilized by quantum correlations and do not exist in
the MF limit of the model. One of these is a steady state with
mean magnetization values that lie between the two bistable
MF values and whose correlation functions have properties
reminiscent of both. The correlation length of the new phase
diverges at a critical point, beyond which we find emerging a
new limit cycle state with the magnetization and correlators
oscillating periodically in time.

The paper is organized as follows. In Sec. II we present
a summary of the main results of the paper. In Sec. III we
present the equations of motion which form the starting point
for calculating the dynamics of observables within the MF
and MFQF approaches, presenting details of the MF limit in
Sec. IV. In Sec. V A we discuss the MFQF approximation
scheme that goes beyond MF, and in Sec. V B we describe
a method based on matrix product operators (MPO), applied
to the present model in 1D and 2D. In Sec. VI we present

our results obtained using MPO and MFQF, and in Sec. VII
we conclude with a summary and outlook. The Appendix
contains some further details of the theory and numerics.

II. MAIN RESULTS

We study a driven-dissipative model on a hypercubic lattice
in D dimensions, with N sites located at R ∈ ZD and connec-
tivity Z = 2D. We consider spins one-half using the Pauli
matrices at each site, σ a

R with a = {x, y, z}, and the ladder
operators σ±

R = (σ x
R ± iσ y

R )/2. Decomposing the Hamiltonian
into the kinetic (hopping) part T and the sum of onsite terms,
we have

H = T +
∑

R

(
�

2
σ z

R + �σ x
R

)
, (2)

where H describes two-level quantum systems driven with
amplitude � and detuning �, in a frame rotating with the
drive, using the rotating wave approximation, as derived in
Appendix E. Here, T is

T = −
∑
〈R,R′〉

(
Jσ+

R σ−
R′ + H.c. + 1

2
Jzσ

z
Rσ z

R′

)

= −1

2

∑
〈R,R′〉

(
Jσ x

Rσ x
R′ + Jσ

y
Rσ

y
R′ + Jzσ

z
Rσ z

R′
)
, (3)

with the summation extending over all lattice bonds. Set-
ting J = 0 we have a dissipative Ising model, introduced
in Ref. [47]. In this summary section we set Jz = 0, focus-
ing on the driven-dissipative XY model, first considered in
Refs. [55,61]. For independent couplings with rate � of each
site to a zero-temperature bath, the dissipator in Eq. (1) reads

D[ρ] = �
∑

R

(
σ−

R ρσ+
R − 1

2
{σ+

R σ−
R , ρ}

)
. (4)

Assuming a translationally invariant state (further dis-
cussed in Sec. III), we define the time-dependent mean mag-
netization and its steady-state value (assuming it exists) as

μa(t ) ≡
〈

1

N

∑
R

σ a
R

〉
= 〈

σ a
R

〉
, �μS (t ) ≡ lim

t→∞ �μ(t ). (5)

As shown in Sec. IV A, the steady-state magnetization lies
in the plane μS

z = 2μS
y�/� − 1 that for � = 1 and � = 0.5

becomes μS
z = μS

y − 1, which can be spanned by the two
(orthogonal) vectors μ̂x and μ̂y + μ̂z. This is an exact result
that requires only translation invariance.

In MF, �μS is further constrained to lie on the circumference
of an ellipse. Figure 1 depicts the MF trajectory of �μS in the
steady state plane for JZ = 3 as a function of �/JZ (with
this rescaling facilitating comparison at different interaction
strengths discussed in the following). As seen in Fig. 1(a), for
� ≈ 0 there is a single solution with μS

z ≈ −1 and μS
x > 0.

Increasing �, this solution moves counterclockwise along
the MF ellipse [Fig. 1(b)]. At �/JZ ≈ 0.3, a new stable
solution appears at a high μS

z value, together with an unstable
solution. As � is increased, the new stable solution moves
counterclockwise along the MF ellipse while the unstable
solution moves clockwise, until at �/JZ ≈ 0.37, the unstable
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FIG. 1. (a) Mean steady-state z magnetization μS
z , as a function

of �/JZ for � = 1, � = 0.5, and JZ = 3, on a 1D chain. The
MF limit manifests bistability, with three coexisting solutions, two
of which (those on the branches coming from the limits μz → −1
as � → {0,∞}), are stable. Two black stars mark the points where
the unstable branch meets each of the two stable ones. An accurate
treatment using MPO shows a crossover occurring within a range
of detuning shifted from the MF bistability region. This crossover
is also approximately captured by MFQF, incorporating quantum
fluctuations at leading order, and dressing MF. (b) The steady-state
magnetization in the plane defined by μS

z = μS
y − 1, with the color

code denoting �/JZ , for the MF and MPO at a few values of JZ .
The deviation from the ellipse forming the locus of the MF solutions
results directly from correlations.

solution collides with the first stable solution, both becoming
complex and hence ceasing to be physical solutions. The
remaining single solution continues along the ellipse towards
μS

z → −1 as � → ∞.
In the presence of correlations, the magnetization departs

from the MF ellipse (but remains in the plane). MPO calcu-
lations in 1D with up to a few hundred sites (and the results
verified for convergence with N) show a significant deviation
from MF for 0.2 � �/JZ � 1.4, with a smooth crossover
between the two limiting regimes. This crossover can be
seen in Fig. 1(a) [for JZ = 3], showing also that the MFQF
approximation is capable of washing away the bistability
region resulting in a single phase that follows approximately
the numerically exact MPO solution. This result has been
discussed in Ref. [63] for a somewhat higher value of JZ = 4
(and identical values of the other parameters). We attribute
this capability of MFQF to the fact that it incorporates corre-
lations with a nontrivial spatial dependence, which is an im-
portant characteristic of the many-body solution. As shown in
Ref. [63], in the heart of the crossover region the correlations
grow by up to a few orders of magnitude. The strength of the
correlations depends naturally on the interaction coefficient
J , and in Fig. 1(b) it can be seen that, as J is increased, the
trajectory of �μS deviates further from the MF ellipse, due to
the correlators increasing in magnitude. In Sec. VI we present
a detailed comparison of the MFQF and MPO solutions in 1D
for a larger J value (JZ = 10) and discuss the similarities and
deviations observed.

Turning to 2D lattices, Fig. 2 shows the magnetization
of the MF and MFQF steady states for strong interactions
(JZ = 10, and � = 1, � = 0.5) on a 2D lattice with periodic
boundary conditions and the MPO steady state on a cylinder

FIG. 2. (a) μS
x , and (b) μS

z , as a function of �, for fixed values
of the other parameters, � = 1, � = 0.5, J = 2.5, on a 2D lattice
(JZ = 10). MF manifests bistability for 3.4 � � � 7. The MFQF
approximation predicts multistability with a new branch of an emer-
gent phase appearing, whose magnetization values are intermediate
between the MF branches. Beyond the right edge of this branch
appears a stable limit cycle in a small region 8.24 � � � 8.32,
marked by a black dotted line, giving the amplitude of oscillations
(which vary with �). See the text for a detailed discussion and Fig. 17
for an analysis of the MFQF correlation functions.

of length 12 and circumference 4. The MPO mean magneti-
zation coincides quantitatively very well with that of MFQF
(simulating a 2D lattice of up to 2002 sites), for the steady
state on the branch coming from high � down to � ≈ 7.
This is a regime where the correlation length is not large
(of order 1–2 lattice sites). The steady state on the cylinder
appears to be locally very close to that of a large system. This
is evidenced by the correlation functions, and Fig. 3 depicts
the connected two-point correlation function ηxx(R) [defined
in Eq. (13)], calculated in MPO. We see that the nearest-
neighbor correlations ηxx(|R| = 1) are nearly isotropic, and
along the cylinder’s symmetry axis the correlations decay
rapidly. However, for 5.5 � � � 8.2 MFQF predicts bistabil-
ity in the thermodynamic limit, while due to the finite size
of the MPO cylinder, the MPO steady state is necessarily
unique and must depend smoothly on �. We can therefore not

FIG. 3. The connected two-point correlation function ηxx (R) [see
Eq. (13)] in the steady state obtained by MPO simulations on a 2D
system (4 × 12 cylinder), for the same parameters as in Fig. 2, and
� = 7. The circle diameter on the site R = {x, y} is proportional to
the absolute value of the correlation between the site at the origin
with that in R. The MPO parameters and the approach to simulate
2D systems are discussed in Sec. V B and depicted in Fig. 25.

064301-3



LANDA, SCHIRÓ, AND MISGUICH PHYSICAL REVIEW B 102, 064301 (2020)

FIG. 4. (a) μS
x , and (b) μS

z , as a function of �, for MFQF in 2D-
5D, and MF. The parameters are as in Fig. 2, keeping JZ fixed by
varying J with the dimension. As the dimension increases, the two
MF-like branches progressively converge towards the MF branches
in a larger parameter region, while the intermediate branch gradually
shifts and shrinks. Beyond the right edge of this branch for 2D-4D
appears a stable limit cycle (not indicated), in a small regime of �

that also shrinks with the dimension. The dotted red line denotes the
arithmetic average of the two bistable MF phases. The simulations
were run with lattices of up to 2002, 403, 204, and 105 sites for 2D-
5D, respectively (and periodic boundary conditions).

expect these finite-size MPO calculations to show bistability
or even a discontinuity. At low � values incommensurate
spin-spin correlations develop (with a long correlation length,
although with a relatively small magnitude). There, the MPO
simulations are affected by the small size of the cylinder, and
the agreement with MFQF is only semiquantitative.

In addition to the possibility of the coexistence of stable
MF-like branches, in MFQF a new branch appears in some
range of �, as shown in Fig. 2. The mean magnetization on
this branch has intermediate values between the two MF-like
branches. The new intermediate branch has large and spatially
modulated two-point correlations, whose characteristics are
shown in detail in Fig. 17 in Sec. VI. Moreover, we find
that at the high-� edge of the branch the correlation length
diverges (in practice, reaches the linear size of the lattice).
Beyond this point, we find a small range of � values for which
an oscillatory LC state is stabilized by large correlations
extending throughout the lattice. This phenomenon is not
present in the MF approximation. The oscillation patterns of
the mean magnetization and two-point correlation functions
are presented in Sec. VI.

The MFQF approximation is easy to apply in higher di-
mensions, and the dynamics can be solved with a very large
number of spins. Figure 4 shows the results of such simu-
lations carried out with large lattices from 2D through 5D.
We find multistable branches in progressively larger ranges of
�, which converge towards the MF bistability region. At the
same time, the � range of the intermediate branch is slowly
shrinking as D is increased. We thus see how the MFQF so-
lutions gradually approach the MF ones when D is increased.
For the steady state we present in Fig. 5 a look into the basins
of attraction of the coexisting multistable steady states. The
basins of attraction, whose construction starting from initial
product states is explained in more detail in Sec. IV B, are

FIG. 5. Basins of attraction of the multistable steady states, de-
picted by μS

z in the final state (given by the color code), as a function
of different initial conditions �μ(t = 0) started within a transversal
cut through the unit-magnetization sphere (see Sec. IV B for details),
for � = 1, � = 0.5, JZ = 10, and � = 5.6. As the dimension is
increased for successive panels with (a) 2D, 602 spins, (b) 3D, 203

spins, (c) 4D, 104 spins—all simulated using MFQF—the basin of
attraction of the middle branch (light blue hues) progressively shrinks
and the plots plausibly converge towards the MF basins, shown in
panel (d) with two bistable states.

taken at fixed values of the parameters, varying only D. We
see that, as D is increased from 2 to 4, the basin of attraction of
the new branch shrinks and gives way to increasingly MF-like
basins for the two MF states.

Our study proposes some answers to the questions posed
in the outset. Briefly, our study suggests that quantum phases
in the presence of driving and dissipation can support large
fluctuations, depending on the dimension and interaction
strength, and that a behavior commonly associated with
classical nonlinearity—namely bistability and hysteresis—is
effectively possible in the thermodynamic limit of the studied
quantum system in 2D and above. We find new emerging
states of the system in the long time limit, phases not acces-
sible in MF, which are induced and stabilized by quantum
fluctuations and correlations. For critical parameters long-
range spatial order can be sustained in the lattice due to the
competition of the drive, dissipation and interactions, and for
some parameter ranges, also a temporal order in the form of
a spontaneous forming of a stable limit cycle. Whether these
phases survive as true solutions of the full quantum system
remains a fundamental open question, possibly awaiting for
experimental quantum simulation for full confirmation. Ex-
periments are foreseeable with trapped ions and supercon-
ducting qubits and can possibly answer general questions
about the dynamics of many-body quantum systems, beyond
the sizes accessible to state-of-the-art numerics.

III. EQUATIONS OF MOTION

In this section we present the equations of motion (e.o.m)
for observables of the quantum system [68], which form the
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basis for the MF and MFQF approaches. We define n-points
expectation values in the form〈

σ a
R1

σ b
R2

· · · σ c
Rn

〉 ≡ Tr
{
ρσ a

R1
σ b

R2
· · · σ c

Rn

}
. (6)

By multiplying Eq. (1) with an operator O and taking the trace,
we get an e.o.m for the expectation value

∂t Tr{ρO} = −iTr{[H, ρ]O} + Tr{D[ρ]O}. (7)

Starting with single-site operators O, this leads to a hierarchy
of equations that depend on the value of correlators at the
next order, n + 1. A simple way to handle the derivation is
to use the linearity of the equation and treat separately the
Hamiltonian and the dissipative parts. Matrix elements do not
depend on the picture by which they are calculated, and in the
following we calculate the Hamiltonian part of the e.o.m in the
Heisenberg picture and the dissipative part in the Schrödinger
picture.

An Heisenberg e.o.m for any operator O reads in the
absence of dissipation,

∂t O|�=0 = i[H, O], (8)

and using the commutation relations of Appendix B we obtain
the Heisenberg e.o.m (for � = 0),

∂tσ
x
R

∣∣
�=0 = −

∑
〈R′〉

(
Jσ

y
R′σ

z
R − Jzσ

z
R′σ

y
R

) − �σ
y
R, (9)

∂tσ
y
R

∣∣
�=0 =

∑
〈R′〉

(
Jσ x

R′σ
z
R − Jzσ

z
R′σ

x
R

) − 2�σ z
R + �σ x

R,

∂tσ
z
R

∣∣
�=0 = −J

∑
〈R′〉

(
σ x

R′σ
y
R − σ

y
R′σ

x
R

) + 2�σ
y
R, (10)

with the summation of 〈R′〉 extending over the nearest neigh-
bors of the lattice site R.

We now assume that the initial density matrix commutes
with spatial translations and reflection. In this case, with
a Hamiltonian that is also invariant under these operations,
the time evolution will remain in the same symmetry sec-
tor, which is characterized by a uniform magnetization, and
two-point correlations that are only a function of the dis-
tances. This precludes the possibility of spontaneous symme-
try breaking in the thermodynamic limit, however for � > 0
no AF phase is expected based on MF and 1D MPO results. In
addition, we did not observe any sign of modulation instability
of the uniform states. We (re-)define the MF magnetization of
Eq. (5),

μa(t ) ≡
〈

1

N

∑
R

σ a
R

〉
= 〈

σ a
R

〉
, (11)

and we define a two-point correlation function (correlator),

ϑab(R, R′, t ) ≡ 〈
σ a

Rσ b
R′

〉
, R �= R′, (12)

which is a function of the difference R − R′ alone, symmetric
in a, b (because σ a

R′ and σ b
R commute). The connected two-

point correlator is defined (for R �= R′) by

ηab(R, R′, t )

≡ 〈(
σ a

R − μa
)(

σ b
R′ − μb

)〉 = ϑab(R, R′, t ) − μaμb. (13)

We will similarly refer to the connected three-point correlator
defined for R �= R′ �= R′′,

ζabc(R, R′, R′′, t ) ≡ 〈(
σ a

R − μa
)(

σ b
R′ − μb

)(
σ c

R′′ − μc
)〉
, (14)

which is again a function of the differences only.
Substituting the definition of the correlators in Eqs. (9) and

(10), taking the expectation value and including the dissipative
terms obtained by calculating Tr{D[ρ]σ a

R} in the Schrödinger
picture as in Eq. (7), we get the e.o.m

∂tμx = −(J − Jz )Zϑyz(1) − �μy − �

2
μx, (15)

∂tμy = (J − Jz )Zϑxz(1) − 2�μz + �μx − �

2
μy, (16)

∂tμz = 2�μy − �(1 + μz ), (17)

where ϑab(1) is the correlator at distance ‖R − R′‖1 = 1 (with
‖v‖ = ∑D

j=1 |v j | the l1 norm on the D-dimensional cubic
lattice). We write explicitly

ϑab(1) = μaμb + ηab(1). (18)

Eqs. (15)–(17) are exact but do not form a closed system. In
the following sections we study the MF and MFQF approx-
imations, obtained by closing the equations by truncation at
different orders of n-point correlations. For a related approach
based on expansion of the density matrix in the inverse
connectivity, see Ref. [58].

IV. MEAN FIELD

A. The mean-field steady state

Setting η → 0 in Eqs. (15)–(17), which amounts to assum-
ing that the density matrix is a product of identical onsite
states, we get the MF e.o.m,

∂tμx = −JZμyμz − �μy − �

2
μx, (19)

∂tμy = JZμxμz − 2�μz + �μx − �

2
μy, (20)

∂tμz = 2�μy − �(1 + μz ), (21)

where we have set Jz = 0; since the MF equations depend only
on the difference J − Jz, the MF results for the XY model
hold equally well for the Ising model (by the replacement J →
−Jz), and equivalently, for any combination of the two interac-
tion types (this equivalence ceases to hold when correlations
beyond MF are considered). Combining Eqs. (19)–(21), the
squared length of the MF spin evolves according to

∂t (�μ2) = −�
(
μ2

x + μ2
y + 2μ2

z + 2μz
)
, (22)

where the r.h.s is always negative for magnetization within
the unit sphere. The MF equations are invariant under two
different discrete symmetries

J → −J, � → −�, μx → −μx, (23)

and

� → −�, μx → −μx, μy → −μy. (24)

These two symmetries manifest themselves in the parameter-
space dependence of the steady state as discussed below.
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FIG. 6. MF bistability regions in (JZ, �) parameter plane, for
� = 1 and three values of �. Within the regions bounded by the two
lines at a fixed �, two stable steady-state solutions coexist together
with an unstable one. The unstable solution coincides with the one
stable solution at region boundaries (on the curves shown), and the
end point of the two curves forms a critical point.

Setting the time derivative of Eqs. (19)–(21) to zero and
isolating μy, its steady-state value is determined through a
third order polynomial equation, which can have either one
real root (and two complex conjugate roots) or three real ones.
Each root of the polynomial gives a solution for μy, from
which we get immediately the corresponding μx and μz. In the
case of three different real roots, there are two stable solutions
and one unstable solution, as we find from a linear stability
analysis; linearizing the e.o.m about any steady-state solution
by substituting

�μ = �μS + δ �μ, (25)

we obtain a linear system for the small fluctuations which is
defined by the matrix⎛

⎝ −�/2 −JZμS
z − � −JZμS

y
JZμS

z + � −�/2 JZμS
x − 2�

0 2� −�

⎞
⎠, (26)

and �μS is linearly stable to uniform perturbations when all
eigenvalues of this matrix have a nonpositive real part.

We note that the limit of � → 0 is singular, because for
� = 0 there is no steady state and the dynamics become
Hamiltonian. We present all results by setting � = 1, which
defines the units of energy and time. The condition for bista-
bility is that the discriminant of the cubic equation of the
magnetization is positive. As a function of the parameters, the
discriminant is a high order polynomial, and the condition of
its positivity defines a 3D region in (�, J,�) parameter space,
at fixed value of �. This region has disconnected components
related by the symmetries of Eqs. (23) and (24). We find that
bistability requires |JZ| > 2 (see below). For any fixed �

there is a bistability region in the (J,�) plane on each side
of the line JZ = −�, starting at a cusp point from which two
curves emanate defining the bistability boundary, see Fig. 6.
On each (bifurcation) curve the unstable solution coincides
with one stable solution, and both solutions lead to a zero
eigenvalue upon linearization, with the same eigenvector. At

FIG. 7. MF steady-state trajectories in �μ space as a function of �

(given by the color code), for � = 1, JZ = 10, and three values of �.
At any fixed �, the steady-state solutions obtained at all JZ and �

values form an ellipse within a plane whose inclination is determined
by �, with the sign of μy equal to that of �. See the text for a detailed
discussion.

the cusp the three MF solutions coincide and each has a zero
eigenvalue, all with the same eigenvector. The cusp is also
a critical point where an effective Z2 symmetry appears, as
discussed in Ref. [56].

However, not all values of �μ are allowed in the steady state.
Using Eq. (22), the mean magnetization vector in the steady
state is constrained to lie on the surface of the ellipsoid

(
μS

x

1/
√

2

)2

+
(

μS
y

1/
√

2

)2

+
(

μS
z + 1/2

1/2

)2

= 1, (27)

which is centered about μz = −1/2 and has a z principal
semiaxis of length 1/2, going from the infinite temperature
solution point at �μ = 0 to the pure (product) state at μz = −1,
so that at the steady state the solution obeys −1 � μS

z � 0.
Using Eq. (21), the steady state at a fixed value of � is
obtained by the intersection of the ellipsoid of Eq. (27) with
the plane

μS
z = 2μS

y�/� − 1, (28)

which also shows that μS
z is related to μS

y by a displacement
and stretching, and that the sign of μy is equal to the sign of �.
For � = 0 the steady state is the pure product state μS

z = −1,
while for |�| → ∞ (with the other parameters fixed), we have
found that the steady state is the infinite temperature state,
�μS → �0.

Figure 7 shows how the three components of the mean-field
magnetization vary with � for fixed JZ = 10 and three values
(0.2, 0.5, and 2) of �. The ellipsoid of Eq. (27) is visible, as
well as the fact that the magnetization vector must lie in a
plane determined by Eq. (28). Pairs of points (on the same
ellipsoid) with the same color (i.e., same �) are the bistable
solutions. However, as this is hard to discern in this figure,
Figs. 8–10 present | �μS| as a function of some of the model
parameters, exemplifying the limits of μS , the bistability, and
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FIG. 8. | �μS| as a function of � for � = 1, � = 0.5, and a few
values of JZ . The bistability range in � increases and shifts to higher
values when increasing JZ . Due to the constraints of Eqs. (27) and
(28), the minimal norm | �μS| of the magnetization (which can be
considered as a distance from the infinite-temperature state | �μS| =
0), is bounded.

its dependence on the parameters. Some further properties of
the MF steady state are derived in Appendix A.

B. Mean-field dynamics

We now turn to the dynamics associated to the MF e.o.m.
We here focus on one property of the dynamical system,
which is the distribution of initial conditions converging to the
possible steady states for parameters in the bistability region.
The basins of attraction of each of the bistable solutions can
be calculated by starting the dynamics at initial conditions
chosen within the unit magnetization sphere �μ2 = 1 and
following the dynamics to the steady state. The basins of
attraction contain information on the global dynamics and
were presented in Fig. 5 of Sec. II using the MFQF approach.

In order to visualize the basins of attraction we consider
transversal cuts through the state space, i.e., by restricting
the initial conditions to a plane, e.g., {μx, μz}. We find that
other planar cuts appear qualitatively similar (as exemplified
in Fig. 11); we plot in Fig. 11 μS

z (given by the color code),
as a function of the initial condition �μ(t = 0). As can be
seen, the basins in the region μz � 0 are stretched and twisted
into each other as the parameters are increased into the weak
damping limit (for which �,�, J � �). A quantification

FIG. 9. As in Fig. 8, for � = 5. For these parameters, �μS ap-
proaches the infinite-temperature state around � = 0.

FIG. 10. | �μS| as a function of � for � = 1, � = 1, and a few
values of JZ . The figure is symmetric for � → −�, and it can
be seen how at fixed values of the other parameters, | �μ| → 0 as
|�| → ∞.

of the mixing of the basins of attraction could be done by
measuring the length of the boundary curve between the two
basins or perhaps just by counting the number of jumps on
the boundary of the circle. A more detailed investigation
of the dynamics would be required in order to explain this
mechanism. However, Fig. 12, showing the dynamics of �μ
in the weak damping limit, suggests an initial understanding.
It can be seen that many rotations in phase space take place
before the solution settles to one of the steady states, with
neighboring initial conditions originating from the upper half
of the Bloch sphere separating into the two steady states.

FIG. 11. Basins of attraction of the two bistable steady states,
depicted by the final μS

z (given by the color code), as a function of the
initial condition in a transversal cut through the unit-magnetization
sphere, for � = 1. The model parameters are increased for each
panel, and in panels (a), (b), and (d) the initial condition lies in the
plane {μy, μz}, while in panels (c) the initial condition lies in the
plane {μx, μz}, showing that the choice of the initial plane is not a
priori very restrictive. The basins in the region μz � 0 are stretched
and twisted into each other as the parameters are increased into the
weak damping limit �, �, J � �.
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FIG. 12. MF trajectories �μ(t ) for � = 1, � = 10, JZ = 220,
and � = 20, with a few initial conditions. The fast rotations (on
the scale of � = 1), which are induced by the drive and interactions
in the weak damping limit, lead neighboring initial conditions in
the upper hemisphere of initial conditions to separate into the two
bistable steady states.

Clearly, at weak �, the combined effects of fast precession
with the bistability of the final state gives the MF dynamics
some strong sensitivity to the initial condition.

V. APPROACHES GOING BEYOND MEAN FIELD

In this section we present two methods allowing us to
explore the physics of the model beyond the MF approxi-
mation. The first (Sec. V A), MFQF, amounts to dress the
MF state at leading order by two-point correlations. Next, in
Sec. V B, we describe a numerical method based on MPO
which allows for a controlled and accurate approach to the true
many-body state in low dimension (1D and thin 2D cylinders).
The results obtained by these two complementary techniques
will be compared and discussed in Sec. VI.

A. Mean field with quantum fluctuations

Going beyond MF, the next order correction can be in-
cluded by deriving the e.o.m of ϑab(R) [setting R′ = 0]. The
approximation we present is based on assuming that ζ , defined
in Eq. (14), and higher order connected correlators, can be
neglected in comparison to η. The e.o.m of ϑab is

∂tϑab(R) =
∑

d

�adϑdb(R) +
∑

d

�bdϑad (R)

+ fab(μ, ϑ ) + gab(μ, ϑ ), (29)

where the local Hamiltonian terms are described using the
matrix

� =
⎛
⎝ 0 −� 0

� 0 −2�

0 2� 0

⎞
⎠, (30)

while fab(μ, ϑ ), which contains terms proportional to J and
to Jz, comes from the kinetic terms, and gab(μ, ϑ ) ∝ � comes
from the Lindbladian part. Both are derived in Appendix B.

By using Eq. (13) we get the e.o.m system for η(R, t ),

∂tηab(R, R′, t ) = ∂tϑab(R, R′) − ∂t [μaμb], (31)

which we solve numerically together with the coupled system
for �μ(t ) [Eqs. (15)–(17)], on lattices of varying sizes, surpass-
ing one hundred thousand sites.

We consider the covariance matrix of the total magnetiza-
tion,〈[∑

R

(
σ a

R − μa
)][∑

R

(
σ b

R − μb
)]〉

=
〈∑

R,R′

(
σ a

Rσ b
R′ − μaμb

)〉

= N (δa,b + iεabcμc − μaμb) + N
∑
R �=0

ηab(R), (32)

whence the imaginary term drops from the symmetrized co-
variance per spin, which has a finite nontrivial value in the
thermodynamic limit N → ∞,

�̃ab/N = (δa,b − μaμb) +
∑
R �=0

ηab(R). (33)

The first terms result from the local properties of the spin-
one-half system. In the following we will study the total
(connected) correlation as a measure of the correlations in a
fluctuating domain,

�ab =
∑
R �=0

ηab(R). (34)

B. Matrix product operators

We numerically solve the Lindblad equation using an MPO
representation of the density matrix of the system [69–73].
Since the density matrix can be considered as a pure state
(i.e., a wave function) in some enlarged Hilbert space with
four states per sites, it can be encoded as an matrix-product
state (MPS) in that enlarged space. In this vectorized repre-
sentation, the density matrix is often noted |ρ〉〉, as a “super
ket.” This point of view allows us to implement the Lindblad
evolution in a way that is formally similar to the unitary
evolution of a pure state in tDMRG, the Hamiltonian being
replaced by the Lindbladian (super)operator.

One qualitative difference with the unitary evolution is of
course the fact that the “norm” 〈〈ρ〉〉 = Tr[ρ2] is not con-
served during the time evolution. The latter is simply related
to the second Rényi entropy of the system, S2 = − ln Tr[ρ2].
If we denote by |1〉〉 the super ket representing the identity
density matrix, the scalar product 〈〈1|ρ〉〉 = Tr[ρ] = 1 is,
however, conserved. In addition, in the presence of dissipa-
tion, a finite system is expected to have a unique steady state,
independent of the initial conditions (note that this may no
longer be true if one first takes the thermodynamic limit and
then the limit of long times [63]).

As for MPS-based methods describing pure states, an
MPO-based description of a mixed state gets more and more
precise as the so-called bond dimension is increased. In 1D,
we expect that (in generic situations) the bond dimension
required to achieve a given precision does not grow with the
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FIG. 13. Second Rényi entropy per site in the steady state, S2/N
(red), and operator-space entanglement entropy (OSEE) associated
to the bipartition of the system in the center (blue). These entropies
allow to identify the crossover region where the steady state is
most distant from a pure state (large S2) and where it is the most
correlated (maximum of the OSEE). The data were obtained by
MPO simulations on 1D systems (of size N = 100 or 200) and 2D
systems [cylinders with perimeter Ly = 4 and length Lx = 8 or 12
(full lines or dashed lines)], for JZ = 4 and JZ = 10. In 1D the
OSEE saturates with the system size, whereas it is expected to be
proportional to Ly in 2D. The maximal MPO bond dimension used
in the calculations is 200 or 300 in 1D (depending on the value of �)
and it is equal to 400 in the 2D cylinders.

system size (like when encoding a gapped pure state with
MPS). For this reason one can access long times and very
accurate results for large 1D systems.

In the same way as MPS methods can be used for 2D
lattices, using a snakelike path visiting all sites [74], one can
encode the density matrix of a 2D mixed state using an MPO.
One price to pay is the fact that interactions that are local in 2D
become long-ranged along the one-dimensional path. For this
approach the most natural geometry is that of a cylinder, with
open boundary conditions in the x direction and periodic ones
in the y direction. In that case the bond dimension required
to achieve a given precision grows exponentially with the
cylinder diameter Ly, contrary to genuinely 2D representations
(see for instance Ref. [65]). On the other hand, with MPS
and MPO one can take advantage of the efficient and the
well controlled algorithms that have been developed to evolve
and optimize matrix-products objects. As for the x direction,
the numerical cost (time and memory) is linear in Lx. The
calculations presented here are limited to Ly = 4, where a
bond dimension of the order of a few hundred is enough to
give some good precision.

A quantity of interest is the Von Neumann entanglement
entropy associated to the pure state |ρ〉〉. It can be computed

for any bipartition of the system and is called the operator
space entanglement entropy (OSEE) [75]. For a product state
(ρ = ⊗

i ρi), mixed or pure, the OSEE vanishes. For a pure
state, the OSEE is twice the usual Von Neumann entropy
associated to the same bipartition. This entropy quantifies
the total amount of correlations, classical and/or quantum,
between the two subsystems. It also quantifies how “demand-
ing” it is to represent (or approximate) ρ in an MPO form.
Figure 13 represents the steady state OSEE as a function of
�, for two values of JZ at � = 0.5 and � = 1. The partition
considered here corresponds to a left-right cut in the center,
with two subsystems of equal sizes. Both 1D chains and 2D
cylinders are considered, and the results allow us to identify
the interesting range of � where the steady state is the most
correlated and thus the most distant from a MF product state.
In 2D cylinders the OSEE is expected to be proportional to
the perimeter Ly, which would be the analog of the “area-law”
scaling for the entanglement entropy in pure states. Since
the maximal value of the OSEE turns out here to be quite
moderate (less than unity), it might be possible to investigate
cylinders with a slightly larger perimeter in future studies.

The OSEE is sensitive to all (connected) correlations be-
tween the two subsystems, but it does not distinguish between
classical and quantum correlations. In the case of pure states
the Von Neumann entropy (of a subsystem) is the usual
measure for entanglement, and it is specifically sensitive to
quantum effects. But the entropy, computed from the reduced
density matrix of a subsystem, is generically nonzero in any
mixed state, even if the problem is purely classical. In the
present model the steady states are of course not completely
classical, but in future studies it would be interesting to
quantify the amount of “quantumness,” that is how far the state
is from separable states.

VI. RESULTS BEYOND MEAN FIELD

A. Dimension one

As discussed in Ref. [63] and shown also in Fig. 1, the
difference between the steady state magnetization �μS obtained
in 1D with MPO and the MF ellipse increases with the inter-
action strength J . This deviation is induced by the presence of
nonzero correlations at distance = 1 in the lattice, as can be
seen from (the exact) Eqs. (15)–(17). Figure 15 compares �μS

for MF, MFQF, and MPO through the crossover region in �,
for a larger value of JZ = 10 in 1D. The corrections to MF are
significant for 6 � � � 11. To study the correlation functions
we quantify the six independent components of ηab(R) by
their discrete Fourier transform and the correlation length.
Figure 16 presents two length scales—the correlation length
1/λab and the inverse of the dominant wave vector qab—which
amounts to a dominant functional dependence on distance in
the form

ηab(R) ∼ exp{−λabR}[Aab + Bab cos(qabR + φab)], (35)

where Aab, Bab, and φab are coefficients. In the heart of the
crossover region across the MF bistability, the correlations
calculated in MFQF or MPO in 1D chains grow by up to a
few orders of magnitude, as measured by �ab = ∑

R ηab(R)

064301-9



LANDA, SCHIRÓ, AND MISGUICH PHYSICAL REVIEW B 102, 064301 (2020)

FIG. 14. Relaxation time 1/κ extracted from the MPO simula-
tions 1D (same parameters as in Fig. 15). Two relaxation times are
shown: one associated to the relaxation of the x component of the
magnetization to its steady value (blue), and the other one associated
to the second Rényi entropy S2 (red). Both show a similar behavior,
with a peak (of finite height) in the crossover region.

[see Eq. (33)]. As can be deduced from Fig. 16, the spatial
structure of the two-point correlation functions undergoes a
qualitative change within the crossover region. For low �

values the correlations have a relatively small amplitude, but
they decay slowly with distance (large correlation length) and
display some incommensurate density-wave character. On the
other hand, for high �, the correlations are very short-ranged
(overdamped in space) and do not exhibit oscillations.

Although the system does not show any bistability, we
observe some enhanced relaxation time in the crossover re-
gion, as shown in Fig. 14. There, the relaxation to the steady

FIG. 15. Mean steady state (a) x magnetization μS
x , and (b) z

magnetization μS
z , as a function of �, for fixed values of the other

parameters, � = 1, � = 0.5, J = 5, on a 1D chain (JZ = 10). The
MF limit manifests bistability for 3.4 � � � 7. MPO shows that
the jump is smoothened to a crossover, within a range of detuning
(6 � � � 11) shifted from the MF bistability region. The MFQF
approximation results in a unique phase that follows approximately
the exact result in some range of �. For 7.6 � � � 8.4 this approach
breaks as the correlations become too large, and no data points
are plotted. An analysis of the correlation functions is presented in
Fig. 16.

FIG. 16. Characterization of the two-point correlation functions
ηab(R) [see Eq. (35)] in the steady-state of a 1D system and the com-
parison of MFQF with MPO, for the same parameters as in Fig. 15.
(a) The correlation length [1/λab, see Eq. (35)] drops sharply in the
middle of the crossover region, where also; (b) the spatial period of
oscillations [2π/qab], shows a sharp increase, beyond which ηab(R)
are overdamped functions of distance. (c),(d) Total correlation �ab =∑

R ηab(R), showing a increase by up to three orders of magnitude in
quantum fluctuations within the crossover region. For low � values,
ηab are relatively small but spatially extended, while for high �

values ηab are much larger but short-ranged. The approximate MFQF
expansion captures the features of the correlations qualitatively and
quantitatively, except at the center of the crossover region, where the
correlations are overestimated by the approximation and in some �

range diverge leading to a breakdown of the method.

state was fitted to an exponential decay ∼ exp(−κt ). The
relaxation times 1/κ associated to the x magnetization as well
as that associated to the second Rényi entropy S2 are shown.
Although these two quantities are very different in nature,
they give very similar relation times. The rate κ extracted
from the dynamics of other observables, like μz or the OSEE
for instance, also give very similar results. This suggests that
we are here probing some intrinsic timescale of the model,
proportional the inverse of the Liouvillian gap.

From Fig. 16 it can be seen that the crossover region is
well captured by the MFQF approximation. Although quan-
titatively overestimated in the crossover region, the corre-
lation length predicted by MFQF behaves in a way that is
qualitatively very similar to that given by MPO calculations
[Fig. 16(a)]. But what is quite remarkable is the agreement
observed in Fig. 16(b) concerning the wave vector of the
modulations of the correlations. It appears that the MFQF
formalism captures almost exactly this incommensurate char-
acter of the correlations. The magnitude of the correlations,
probed here via �zz and �xx [see Eq. (33)], also behaves in a
way that is qualitatively similar to the MPO data. We note,
however, that for 7.6 � � � 8.4 the MFQF approximation
breaks down due to quantum fluctuations becoming too large
and the correlators grow to nonphysical (>1) values. For this
reason, it is in this range that the deviations from the MPO
results are the largest.
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FIG. 17. Characterization of the two-point correlation functions
ηab(R) in 2D, for the same parameters as in Fig. 2, within the MFQF
approximation. Three branches of solutions are shown. (a) The cor-
relation length, which diverges at the right edge of the intermediate
branch (� ≈ 8.2). (b) Total correlation �ab = ∑

R ηab(R), showing
a large increase in quantum fluctuations within the intermediate
branch. (c) The spatial period of oscillations shows a sharp increase
in the intermediate branch, beyond which ηab(R) are overdamped
functions of distance. (d) The rate of convergence to the steady state,
taking the exponential form ∼ exp{−κt}, showing a critical slowing
down of the decay dynamics at the edges of the phase branches. See
text for details.

B. Higher dimensions

As discussed in the introduction and in Ref. [63], in di-
mension two and higher, MFQF predicts bistability. While
in 2D our MPO simulations could be used to benchmark
the MFQF results in regions where the correlation length is
not too large, the accessible system size is relatively small,
resulting necessarily in a unique steady state.

We therefore focus here on the MFQF results on 2D lat-
tices, with the same parameters as the 1D example discussed
above, with JZ = 10 fixed (hence J = 2.5). The MFQF
approximation converges throughout the � range presented
in Fig. 2, and the maximal values taken by the correlation
functions are smaller than in 1D. Figure 17 shows the charac-
teristics of the correlation functions for the three steady-state
branches. We find that the new emerging branch at intermedi-
ate magnetization values shares some properties with the MF-
like branch that is stable at low � values: a large correlation
length and spatial oscillations characterized by qab �= 0. At the
same time, the new branch has large absolute values of the
correlation functions, as is the case with the MF-like branch
that is stable at � � 1.

The inverse of the relaxation time to the steady state, κ , is
plotted in Fig. 17(d). It is obtained by fitting ∂t �μ2, the time
derivative of the square of the magnetization, to ∼ exp{−κt}
at large times (of order t ∼ 100). κ thus measures decay
rate of small perturbations about the steady state. It can be
seen that κ vanishes at the end points of each branch. In 2D
we thus observe some critical slowing down at the edge of
each branch (this holds in the MF approximation as well).
Some important slowing down is also observed in the MPO

FIG. 18. (Upper panel) The oscillations of the MFQF magne-
tization in the limit cycle state in 2D for � = 8.3 with the other
parameters as in Fig. 2 [� = 1, � = 0.5, JZ = 10]. (Lower panel)
A space-time diagram of the 2D correlation function ηzz(R, t ), with
R = {R1, R2 = 0} taken along a 1D cut through the lattice. Nonde-
caying correlations extending over the simulated system size (with
2002 sites), manifest oscillations (notable at short-range distance)
that are coupled to the magnetization oscillations.

calculations performed on cylinders, although the relaxation
time cannot diverge on the small systems we considered.

As discussed briefly in Sec. II, we find that the new steady
state and the limit cycle (LC) are stable in smaller � regions
as the dimension is increased. As with the LC, an exact
characterization of this dependence is beyond the scope of
the current work (and it becomes increasingly demanding to
study the dependence of the results on N as the dimension is
increased).

For � ≈ 8.24 (see Fig. 17), the correlation length in the
new branch diverges, and beyond this point we find a stable
LC, coexisting together with the MF-like branch in a small �

range (up to � ≈ 8.32). The amplitude of the magnetization
oscillations varies with � within the range of stability of
the LC and so does its frequency and other characteristics.
In Fig. 18 we illustrate the LC phenomenon, showing os-
cillations of the mean magnetization as a function of time
and the space-time pattern in the correlation functions (along
one spatial coordinate in the square lattice). In particular,
the connected two-point function ηzz becomes spatially long
ranged at periodic intervals in time [yellow lines in Fig. 18].

VII. SUMMARY AND OUTLOOK

We have presented a detailed characterization of the MF
limit of the driven-dissipative XY spin model and studied
some aspects of the associated dynamics such as the basins
of attraction of different steady states. Going beyond MF,
we have employed some accurate MPO-based method and
the approximate MFQF approach. We have addressed the
existence of multistability of the steady state predicted in MF,
in addition to the possibility of states not captured by the MF
limit, together with the spontaneous emergence of long-range
spatial and temporal order.

As we have seen, in 1D the MFQF approach is capable of
converging to a unique steady state, giving a picture which is
very different from MF. As a comparison to MPO simulations
shows, it is also capable to qualitatively and quantitatively pre-
dict some characteristics of the correlation functions, except
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FIG. 19. The measure of convergence of the correlation func-
tions used for MFQF [Eq. (C1)], for � = 1, � = 0.5, JZ = 10 on
a 1D chain with N = 1000 sites.

in parameter regimes where the correlations become so large
such that the neglect of three-point correlations (and higher)
renders the approximation nonconverging. As the dimension
is increased the correlations decrease in absolute magnitude.
There, the MFQF is expected to become more accurate and
this has been confirmed by comparison to MPO simulations of
small 2D systems, for parameters that allow the comparison.
It is straightforward to include in the MFQF formalism some
more general local Lindblad terms acting on the spins, like
the effect of dephasing. This could be a first immediate
extension of the current work. Also, the investigation of other
lattice geometries and/or longer-ranged spin interactions (as
in Refs. [76–78]), all of which are relevant for 2D systems of
trapped ions, constitute interesting future directions.

The treatment of correlations in MFQF can account for
two-point correlations with a large correlation length. This
has allowed us to find a new steady state branch in 2D and
higher, which is lacking in the MF limit. Clearly, the regimes
with a large correlation length would be difficult to capture
using methods based on small clusters. This intermediate
branch shares some of its characteristics with the two MF-
like steady states, making it suggestive to speculate that it
may consist pictorially of coexisting domains. The correlation
length in this branch diverges at some point, which may be
an indication that the true quantum solution tends to develop

FIG. 20. The measure of convergence of the time dynamics used
for MFQF [Eq. (C2)], for � = 1, � = 0.5, JZ = 10 on a 1D chain
with N = 1000 sites.

FIG. 21. The measure of convergence of the correlation func-
tions used for MFQF [Eq. (C1)], for the intermediate branch with
the parameters � = 1, � = 0.5, JZ = 10 on a 3D lattice with
N = 303 sites.

long-range order in the form of a superposition. Beyond
this critical point, MFQF predicts a correlation-induced limit
cycle state, with correlation functions again extending over
the simulated system size, and hence compatible with long-
range spatiotemporal order. It should be noted that the MFQF
approximation allows simulating very large lattices, but of
course, it remains an open question how the inclusion of
higher-order correlations would affect this behavior.

The application of MPO simulations to 2D lattices, demon-
strated here for a system with Lindblad dynamics, has proven
successful. The numerical cost of such simulations is expo-
nential in the perimeter (Ly) of the cylinder but only lin-
ear in its length. This allows one to compute accurately in
a controlled way not only the steady state properties but
also the transient dynamics of the system, for systems that
are significantly larger than what is doable with an exact
brute-force approach, while still keeping all the many-body
correlations. In the present study we have been deliberately
conservative, in the sense that we kept the systems sufficiently
small so that the MPO calculations were essentially exact.
These MPO calculations on small cylinders could then be
used to benchmark the MFQF results in situations where the
correlation length was small enough. It would of course be

FIG. 22. The measure of convergence of the time dynamics
used for MFQF [Eq. (C2)] results, for the intermediate branch
with the parameters � = 1, � = 0.5, JZ = 10 on a 3D lattice with
N = 303 sites.
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FIG. 23. Time evolution of the z component of the magnetiza-
tion, x component, and OSEE for various sets of MPO simulation
parameters. It illustrates the good convergence of the results for
� = 5, � = 0.5, � = 1, and J = 5. At this scale, we observe that
the results are practically unchanged if one varies the time step τ

from 0.1 to 0.025, if one changes the maximum bond dimension χ

from 200 to 400, or if one increases the system size N from 100 to
200.

very interesting to push the 2D MPO simulations further in
order to see if one can reach big enough systems and confirm
the new phenomena predicted to occur in 2D by the MFQF
approach.

Finally, we have shown that the basins of attraction of the
new steady state progressively decrease with the dimension.
We have also found that the parameter range of stability of
the limit cycle again decreases with the dimension, possibly
disappearing above 4D. Although it is hard to verify that
these observations are independent of the simulated lattice
sizes (due to the lateral lattice dimension accessible in our
simulations necessarily decreasing with D, while the corre-
lation length much less, or not at all for some parameters),
it provides a plausible explanation to the fact that these new
phases do not survive in the MF limit. The possibility of
simulating these spin models with controllable parameters
using systems of trapped ions in 1D [79–81] and 2D [7], and
arrays of superconducting qubits [1,16,17,19,82,83], holds a
promise for exploring the emergence of phases with long
spatial and temporal order out of the competition of coherent
driving, dissipation, and strong interactions.
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APPENDIX A: FURTHER PROPERTIES OF
THE MF STEADY STATE

To understand the nature of the solutions as a function of
all the parameters, we start by considering some simple limits.
Using Eq. (28) we find that for � > 0,

μS
y <

1

2�/�
. (A1)

In the limit � → 0, the plane of Eq. (28) is nearly horizontal
in the �μ space and μS

z → −1, while for |�| → ∞ it is nearly
vertical (see Fig. 7). In the latter case, combining Eq. (A1) and
the steady-state relation for μS

x ,

μS
x = −2μS

y

(
�� − �JZ + 2JZ�μS

y

)
/�2, (A2)

implies that for |�| → ∞ (with the other parameters fixed),
μS

x , μ
S
y → 0 and μS

z → 0 or μS
z → −1 (we have found that in

all cases that we study, for |�| → ∞ the steady state is the
infinite temperature state, �μS → �0).

Fixing the value of the magnetization (within the con-
straints above), we can solve the steady state equations to
obtain the model parameters �/� and �. If μS

y = 0, we get
μS

x = 0 and μS
z = −1, and this requires � = 0. For μS

y �= 0
we obtain

�/� = (
1 + μS

z

)
/2μS

y , � = −�μS
x/2μS

y − JZμS
z . (A3)

Hence, at fixed � = 1, � is uniquely determined and we get a
straight line in (J,�) plane. Using Eq. (A3) we find that the
magnetization

�μu ≡ (μx = 1/2, μy = 1/2, μz = −1/2) (A4)

occurs for � = 1/2 along the line

�u = −�/2 + JuZ/2. (A5)

The point cu ≡ (JZ = 2,�/� = 1/2) is a critical point of the
bistability region for |�|/� = 1/2. This is the only critical
point at JZ = 2, as exemplified in Fig. 6. The magnetization
�μu is the unstable steady state solution along the line �u(Ju)
that crosses the bistable region.

APPENDIX B: EQUATIONS OF MOTION

For spin one-half operators (Pauli matrices), we have the
commutation relations, with a, b, c = {x, y, z},

[
σ a

R , σ b
R′

] = 2iεabcσ
c
R δR,R′ ,

(
σ a

R

)2 = 1, (B1)
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and the algebra of the ladder operators reads

[σ+
R , σ−

R′ ] = δR,R′σ z
R,

[
σ±

R , σ z
R′

] = ∓2δR,R′σ±
R . (B2)

For the local Hamiltonian terms we get

[h, σ+
R ] = −�σ z

R + �σ+
R , [h, σ−

R ] = �σ z
R − �σ−

R ,[
h, σ z

R

] = −2�(σ+
R − σ−

R ). (B3)

With the anticommutation relations on the same site,
{σ a

R , σ b
R} = 2δa,b, we get the known relation

σ a
Rσ b

R = δa,b + iεabcσ
c
R, (B4)

that allows us to simplify the dissipator terms when deriving
the e.o.m.

The Hamiltonian part of the e.o.m for ϑ [Eq. (29)] can be
derived most simply from the relation

∂tϑab(R)|�=0 = 〈(
∂tσ

a
R

)
σ b

0

〉 + 〈
σ a

R

(
∂tσ

b
0

)〉
(B5)

and is obtained by multiplying Eqs. (9) and (10) by the
required operator, and taking the expectation value. To derive
the components of f (μ, ϑ ) in Eq. (29) from Eqs. (9) and (10),
we multiply the e.o.m of σ a

R (with R �= 0) on the right by σ b
0

and expand the following series

∑
R′

‖R′ − R‖ = 1

σ c
R′σ

d
R σ b

0 = σ c
0 σ b

0 σ d
R δ‖R‖,1 +

∑
R′

‖R′ − R‖ = 1, R′ �= 0

σ c
R′σ

d
R σ b

0 . (B6)

By assuming ζ ≈ 0 for the three-point connected correlator of Eq. (14) [with R �= R′ �= R′′],

ζabc(R, R′, R′′) = 〈(
σ a

R − μa
)(

σ b
R′ − μb

)(
σ c

R′′ − μc
)〉

= 〈
σ a

Rσ b
R′σ

c
R′′

〉 + 2μaμbμc − μaϑbc(R′ − R′′) − μbϑac(R − R′′) − μcϑab(R − R′), (B7)

and using Eq. (B4) we can simplify Eq. (B6) to get∑
R′

‖R′ − R‖ = 1

〈
σ c

R′σ
d
R σ b

0

〉 ≈ [δc,bμd + iεcbeϑed (R)]δ‖R‖,1 −
∑

R′ �= 0
‖R′ − R‖ = 1

[2μbμcμd − μbϑcd (R′ − R) − μcϑbd (R) − μdϑbc(R′)]

= [δc,bμd + iεcbeϑed (R)]δ‖R‖,1 − [2μbμcμd − μbϑcd (1) − μcϑbd (R)][Z − δ‖R‖,1] +
∑

R′ �= 0
‖R′ − R‖ = 1

μdϑbc(R′).

(B8)

Multiplying on the left the e.o.m of σ b
0 by σ a

R with R �= 0,∑
‖R′‖=1

σ a
Rσ c

R′σ
d
0 = σ a

Rσ c
Rσ d

0 δ‖R‖,1 +
∑

‖R′‖ = 1
R′ �= R

σ a
Rσ c

R′σ
d
0 , (B9)

expanding we get∑
‖R′‖=1

〈
σ a

Rσ c
R′σ

d
0

〉 ≈ [δa,cμd + iεaceϑed (R)]δ‖R‖,1 −
∑

‖R′‖ = 1
R′ �= R

[2μaμcμd − μaϑcd (R′) − μcϑad (R) − μdϑac(R − R′)]

= [δa,cμd + iεaceϑed (R)]δ‖R‖,1 − [2μaμcμd − μaϑcd (1) − μcϑad (R)][Z − δ‖R‖,1] +
∑

R′ �= 0
‖R′ − R‖ = 1

μdϑac(R′).

(B10)

Let us derive fab(μ, ϑ ) of Eq. (29) separately for the two cases Jz = 0 and J = 0 (of course by linearity, they can be added).
For Jz = 0, multiplying (B8)–(B10) by J with the correct sign and summing we get,

fxx(R) = 2J[2μxμyμz − μxϑyz(1) − μyϑxz(R)][Z − δ‖R‖,1] − 2J
∑

R′ �= 0
‖R′ − R‖ = 1

μzϑxy(R′), (B11)

fyy(R) = −2J[2μxμyμz − μyϑxz(1) − μxϑyz(R)][Z − δ‖R‖,1] + 2J
∑

R′ �= 0
‖R′ − R‖ = 1

μzϑxy(R′), (B12)

fzz(R) = −2J[μxϑyz(R) − μyϑxz(R)][Z − δ‖R‖,1] − 2J
∑

R′ �= 0
‖R′ − R‖ = 1

[μyϑxz(R′) − μxϑyz(R′)]. (B13)
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fxy(R) = J[2μ2
yμz − 2μ2

xμz − μyϑyz(1) − μyϑyz(R) + μxϑxz(1) + μxϑxz(R)][Z − δ‖R‖,1]

− J
∑

R′ �= 0
‖R′ − R‖ = 1

[μzϑyy(R′) − μzϑxx(R′)], (B14)

fxz(R) = −Jμyδ‖R‖,1 + J[2μ2
z μy − μzϑyz(1) − μyϑzz(R) − μxϑxy(R) + μyϑxx(R)][Z − δ‖R‖,1]

− J
∑

R′ �= 0
‖R′ − R‖ = 1

[μzϑyz(R′) + μyϑxx(R′) − μxϑxy(R′)], (B15)

fyz(R) = Jμxδ‖R‖,1 + J
[ − 2μ2

z μx + μzϑxz(1) + μxϑzz(R) − μxϑyy(R) + μyϑxy(R)
]
[Z − δ‖R‖,1]

+ J
∑

R′ �= 0
‖R′ − R‖ = 1

[μzϑxz(R′) − μyϑxy(R′) + μxϑyy(R′)]. (B16)

For J = 0, multiplying (B8)–(B10) by Jz with the correct sign and summing we get,

fxx(R) = −2Jz[2μxμyμz − μxϑyz(1) − μzϑxy(R)][Z − δ‖R‖,1] + 2Jz

∑
R′ �= 0

‖R′ − R‖ = 1

μyϑxz(R′), (B17)

fyy(R) = 2Jz[2μxμyμz − μyϑxz(1) − μzϑxy(R)][Z − δ‖R‖,1] − 2Jz

∑
R′ �= 0

‖R′ − R‖ = 1

μxϑyz(R′), (B18)

fzz(R) = 0. (B19)

fxy(R) = Jz[2μ2
xμz − 2μ2

yμz − μxϑxz(1) − μzϑxx(R) + μyϑyz(1) + μzϑyy(R)][Z − δ‖R‖,1]

+ Jz

∑
R′ �= 0

‖R′ − R‖ = 1

[μyϑyz(R′) − μxϑxz(R′)], (B20)

fxz(R) = Jzμyδ‖R‖,1 − Jz[2μ2
z μy − μzϑyz(1) − μzϑyz(R)][Z − δ‖R‖,1] + Jz

∑
R′ �= 0

‖R′ − R‖ = 1

μyϑzz(R′), (B21)

fyz(R) = −Jzμxδ‖R‖,1 + Jz[2μ2
z μx − μzϑxz(1) − μzϑxz(R)][Z − δ‖R‖,1] − Jz

∑
R′ �= 0

‖R′ − R‖ = 1

μxϑzz(R′). (B22)

The components of g(μ, ϑ ) in Eq. (29) are given by

gaa = −�ϑaa, gxy = −�ϑxy, gxz = −�

[
2ϑxz + 3

2
μx

]
, gyz = −�

[
2ϑyz + 3

2
μy

]
. (B23)

The spin length evolves according to

∂t �μ2 ≡ ∂t
(
μ2

x + μ2
y + μ2

z

) = 2JZ
[
μyηxz(1) − μxηyz(1)

] − �
(
�μ2 + μ2

z + 2μz
)
. (B24)

APPENDIX C: CONVERGENCE OF THE MFQF METHOD

As a measure of the maximal correlations at a given time
t0 we take

�̃ab(t0) = max
t∈[t0−T,t0]

max
R

|ηab(R)|, (C1)

where T is a small averaging window. As a measure of the
convergence of the dynamics we define using Eq. (B24) in a
similar interval,

κ̃ (t0) = 1

T

∫ t0

t0−T
|∂t �μ2|dt . (C2)

We take T = 10 and present results for �̃ and κ̃ in a 1D chain
in Figs. 19 and 20. In general, for � = 1 and � = 0.5, we

find that for JZ � 5 there is a � region (increasing in width
with JZ) where the MFQF approximation breaks in 1D as the
correlations become too large (a border that we define to be
�̃ > 1, a clearly unphysical value).

For 2D and higher dimensional lattices we did not find such
cases, and the method has converged for the various parameter
values that have been checked. In 2D we find that for the
same parameters as in Fig. 19, �̃xx � 0.6 with other com-
ponents reaching �̃ab ∼ 0.1. The correlation length shown in
Fig. 17(a), which is at most 10–20 lattice sites up to the edge
of the intermediate branch, implies that the simulations are
well converged with the simulated lattice of 2002 sites. As
the dimension is increased, �̃ab decrease further, and also the
typical correlation lengths λab for similar parameters decrease.
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FIG. 24. Time evolution of the z component of the magnetization
and OSEE for two values of the maximal bond dimension χ , in a
4 × 12 cylinder. � = 1.75 in the top panels, and � = 2 in the bottom
ones. Other parameters: � = 1, J = 2.5. The curves associated to
maximal bond dimensions χ = 400 and 600 are almost on top of
each other at the scale of these plots.

In Figs. 21 and 22 we show the measure of convergence for
a lattice in 3D (simulated with 303 sites), for the intermediate
branch and the same parameters, with the maximal correlation
�̃ab ∼ 0.3. We also find that the correlation length is at most
5–6 lattice sites for most � values, until it starts to increase
sharply, and in the range 7.2 � � � 8 the correlation length
assumes a magnitude of the order of the lateral lattice size
available in the simulations.

APPENDIX D: CONVERGENCE CHECKS OF
THE MPO CALCULATIONS

Our MPO implementation is based on the iTensor library
[84] and encodes the Liouvillian superoperator as a super-
MPO (acting on the state which is an MPO). We evolve ρ

in real time using a Trotter scheme of order 4 [85,86], with
an error for each step which scales as O(τ 5). In the present
study we typically used τ = 0.1 or 0.05 (depending on the
magnitude of the model parameters). Another crucial param-
eter is the maximum (bond) dimension χ used to truncate the
Schmidt spectra after each singular value decomposition. The
errors that are introduced can be estimated by checking how
the relevant observables change when varying the parameters
above. The results for 1D chains are summarized in Fig. 23.
The effect of the finite bond dimension is illustrated in Fig. 24,
where a simulation with χ = 400 is compared to one with
χ = 600.

FIG. 25. Top: one-dimensional MPO path used to simulate the
system on cylinder (periodic boundary condition in the y direction,
and open ones in the x direction). Bottom: local mean magnetizations
μx (i) and μz(i) (shifted by 1 for clarity) in the steady state, as a
function of the site index along the 1D path. The plateaus of width
4 reflect the fact that the magnetization is translation invariant in the
y direction, as it should be. To pass such a (sanity) check, the bond
dimension should be large enough, since the translation invariance in
the y direction is explicitly broken by the 1D path. Parameters: JZ =
10 (J = 2.5), � = 6, � = 1, and � = 0.5. Simulation parameters:
maximum bond dimension χ = 400, trotter step τ = 0.05, and total
time evolution t = 20.

APPENDIX E: TRANSFORMATION TO
THE ROTATING FRAME

We consider a two-level system, represented by spin-1/2
operators. The energy difference between the two σ z eigen-
states (with σ z eigenvalues 1 and −1) is modelled by the term

H0 = ωcσ
z/2. (E1)

The driving term in the laboratory frame is a classical external
field which couples to the spin, of amplitude 2� and rotating
at the angular frequency ω. It corresponds to the following
term:

V (t ) = 2� cos(ωt )σ x. (E2)

This could, for instance, describe the rotating electric field of a
laser (or of a microwave) coupled to the two-level system [87].
The mapping from this time-dependent Hamiltonian Hlab =
H0 + V (t ) in the laboratory frame to a time-independent
Hamiltonian (in the rotating frame) amounts to using the
unitary transformation

U (t ) = exp{iωtσ z/2} (E3)

and to considering the transformed density matrix ρ̃(t ) =
U (t )†ρ(t )U (t ). The Hamiltonian in the rotating frame is
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given by

H = U (t )†HlabU (t ) + i∂tU (t )†U (t ), (E4)

which, making the rotating wave approximation (neglecting
terms rotating with frequency 2ω, justified for ω � �), re-
sults in the time-independent Hamiltonian

H = �σ x + �σ z/2, � ≡ ωc − ω. (E5)

As for the jump terms, a simple calculation shows that they are
not affected by the unitary transformation. This is because a
unitary rotation of angle θ about the z axis transforms σ+ into
σ+ exp(iθ ) and σ− into σ− exp(−iθ ). Since a σ+ operator is
always accompanied with a σ− operator both in the coherent
interaction terms and in the Lindblad dissipator terms, none
are modified when going to the rotating frame.
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E. A. Demler, Crystallization of strongly interacting photons in
a nonlinear optical fibre, Nat. Phys. 4, 884 (2008).

[11] M. J. Bhaseen, J. Mayoh, B. D. Simons, and J. Keeling, Dynam-
ics of nonequilibrium Dicke models, Phys. Rev. A 85, 013817
(2012).

[12] J. Otterbach, M. Moos, D. Muth, and M. Fleischhauer, Wigner
Crystallization of Single Photons in Cold Rydberg Ensembles,
Phys. Rev. Lett. 111, 113001 (2013).

[13] M. Höning, D. Muth, D. Petrosyan, and M. Fleischhauer,
Steady-state crystallization of Rydberg excitations in an opti-
cally driven lattice gas, Phys. Rev. A 87, 023401 (2013).

[14] I. Carusotto and C. Ciuti, Quantum fluids of light, Rev. Mod.
Phys. 85, 299 (2013).

[15] H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, Cold
atoms in cavity-generated dynamical optical potentials, Rev.
Mod. Phys. 85, 553 (2013).

[16] S. Schmidt and J. Koch, Circuit QED lattices: Towards quantum
simulation with superconducting circuits, Ann. Phys. (Berlin)
525, 395 (2013).

[17] K. Le Hur, L. Henriet, A. Petrescu, K. Plekhanov, G. Roux,
and M. Schiró, Many-body quantum electrodynamics networks:
Non-equilibrium condensed matter physics with light, C. R.
Phys. 17, 808 (2016).

[18] C. Noh and D. G. Angelakis, Quantum simulations and many-
body physics with light, Rep. Prog. Phys. 80, 016401 (2017).

[19] M. J. Hartmann, Quantum simulation with interacting photons,
J. Opt. 18, 104005 (2016).

[20] M. Schiró, C. Joshi, M. Bordyuh, R. Fazio, J. Keeling, and H. E.
Türeci, Exotic Attractors of the Nonequilibrium Rabi-Hubbard
Model, Phys. Rev. Lett. 116, 143603 (2016).

[21] A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg,
Quantum phase transitions of light, Nat. Phys. 2, 856 (2006).

[22] M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, Strongly
interacting polaritons in coupled arrays of cavities, Nat. Phys. 2,
849 (2006).

[23] D. Nagy, G. Szirmai, and P. Domokos, Critical exponent of a
quantum-noise-driven phase transition: The open-system Dicke
model, Phys. Rev. A 84, 043637 (2011).

[24] B. Öztop, M. Bordyuh, O. E. Müstecaplioğlu, and H. E. Türeci,
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